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Inner Product

If u and v are two vectors in 3-space, then the inner product (u, v)
possesses the following properties:

(u, v) = (v, u),

(ku, v) = k(u, v), k a scalar,

(u, u) = 0 if u = 0 and (u, u) > 0 if u 6= 0,

(u + v,w) = (u,w) + (v,w).

Definition (11.1.1: Inner Product of Functions)

The inner product of two functions f1 and f2 on an interval [a, b] is the

number

(f1, f2) =

∫ b

a

f1(x)f2(x)dx
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Orthogonal Function

Definition (11.1.2: Orthogonal Function)

Two functions f1 and f2 are orthogonal on an interval [a, b] if

(f1, f2) =

∫ b

a

f1(x)f2(x)dx = 0

Example

The functions f1(x) = x2 and f2(x) = x3 are orthogonal on the interval

[−1, 1], since
∫

1

−1

x2 · x3dx =

∫

1

−1

x5dx = 0
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Orthogonal Set

Definition (11.3: Orthogonal Set)

A set of real-valued functions {φ0(x), φ1(x), φ2(x), . . .} is said to be

orthogonal on an interval [a, b] if

(φm, φn) =

∫ b

a

φm(x)φn(x)dx = 0, m 6= n
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Orthonormal Sets

The norm, or length ‖u‖, of a vector u can be expressed in terms of the

inner product. The expression (u, u) = ‖u‖2 is called the square norm,

and so the norm is ‖u‖ =
√

(u, u).

The square norm of a function φn is ‖φn(x)‖2 = (φn, φn), and so the

norm, or its generalized length, is ‖φ(x)‖ =
√

(φn, φn). They can be

written as

‖φn(x)‖2 =

∫ b

a

φ2

n(x)dx and ‖φn(x)‖ =

√

∫ b

a

φ2
n(x)dx

If {φn(x)} is an orthogonal set of functions on the interval [a, b] with the

property that ‖φn(x)‖ = 1 for n = 0, 1, 2, . . ., then {φn(x)} is said to be

an orthonormal set on the interval.
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Example 1: Orthogonal Set of Functions

Show that the set {1, cos x, cos 2x, . . .} is orthogonal on the interval

[−π, π].
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Example 2: Norms

Find the norm of each function in the orthogonal set given in the

previous example.
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Normalization of Orthogonal Set

Any orthogonal set of nonzero functions {φn(x)}, n = 0, 1, 2, . . . can be

normalized by dividing each function by its norm.

For example, the set

{ 1√
2π

,
cos x√

π
,

cos 2x√
π

, . . .}

is orthonormal on the interval [−π, π].

Suppose v1, v2, and v3 are three mutually orthogonal nonzero vectors

in 3-space. Then any 3-D vector can be written as

u =
(u, v1)

||v1||2
v1 +

(u, v2)

||v2||2
v2 +

(u, v3)

||v3||2
v3 =

3
∑

n=1

(u, vn)

||vn||2
vn
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Orthogonal Series Expansion (1/2)

If {φn(x)} is orthogonal w.r.t. a weight function w(x) on the interval

[a, b], then multiplying

f (x) = c0φ0(x) + c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) + · · ·

by w(x)φn(x) and integrating yields1

cn =

∫ b

a
f (x)w(x)φn(x)dx

‖φn(x)‖2
(1)

where

‖φn(x)‖2 =

∫ b

a

w(x)φ2

n(x)dx

1 ∫ b

a

f (x)w(x)φn(x)dx = cn

∫ b

a

w(x)φ2

n(x)dx = cn‖φn(x)‖
2
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Orthogonal Series Expansion (2/2)

The series

f (x) =

∞
∑

n=0

cnφn(x)

with coefficients given by Eq. (1), i.e.,

cn =

∫ b

a
f (x)w(x)φn(x)dx

‖φn(x)‖2

is said to be an orthogonal series expansion of f or a generalized

Fourier series.
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Orthogonal Set/Weight Function

Definition (11.1.4: Orthogonal Set/Weight Function)

A set of real-valued functions {φ0(x), φ1(x), φ2(x), . . .} is said to be

orthogonal with respect to a weight function w(x) on an interval

[a, b] if
∫ b

a

w(x)φm(x)φn(x)dx = 0, m 6= n
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A Trigonometric Series (1/2)

Suppose that f is a function defined on the interval [−π, π] and can be

expanded in an orthogonal series consisting of the trigonometric

functions in the orthogonal set

f (x) =
a0

2
+

∞
∑

n=1

(

an cos
nπ

p
x + bn sin

nπ

p
x

)

(2)

Integrating both side of Eq. (2) from −p to p gives2

a0 =
1

p

∫ p

−p

f (x)dx

2 ∫ p

−p

f (x)dx =
a0

2
· 2p + 0

Huei-Yung Lin (RVL, CCUEE) Differential Equations Section 11.2 12 / 36



A Trigonometric Series (2/2)

Multiplying Eq. (2) by cos(mπx/p) and taking integration yields

an =
1

p

∫ p

−p

f (x) cos
nπ

p
xdx

by orthogonality.

Similarly, multiplying Eq. (2) by sin(mπx/p) and taking integration yields

bn =
1

p

∫ p

−p

f (x) sin
nπ

p
xdx

by orthogonality.
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Fourier Series

Definition (11.2.1: Fourier Series)

The Fourier series of a function f defined on the interval (−p, p) is

given by

f (x) =
a0

2
+

∞
∑

n=1

(

an cos
nπ

p
x + bn sin

nπ

p
x

)

where

a0 =
1

p

∫ p

−p

f (x)dx

an =
1

p

∫ p

−p

f (x) cos
nπ

p
xdx

bn =
1

p

∫ p

−p

f (x) sin
nπ

p
xdx
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Example 1: Expansion in Fourier Series

Expand

f (x) =

{

0, −π < x < 0

π − x, 0 ≤ x < π

in a Fourier series.
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Conditions for Convergence

Theorem (11.2.1: Conditions for Convergence)

Let f and f ′ be piecewise continuous on the interval (−p, p); that is, let

f and f ′ be continuous except at a finite number of points in the interval

and have only finite discontinuities at these points. Then the Fourier

series of f on the interval converges to f (x) at a point of continuity. At a

point of discontinuity the Fourier series converges to the average

f (x+) + f (x−)

2

where f (x+) and f (x−) denote the limit of f at x from the right and from

the left, respectively.
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Example 2: Convergence of a Point of Discontinuity

Show that the function given in the previous example converges at any

point on the interval (−π, π).
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Periodic Extension

A Fourier series not only represents the function on the interval

(−p, p), but also gives the periodic extension of f outside this interval.

When f is piecewise continuous and the right- and left-hand

derivatives exist at x = −p and x = p, respectively, then the series Eq.

(2) converges to the average

f (p−) + f (p+)

2

at these endpoints and to this value extended periodically to ±3p, ±5p,

±7p, etc.
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Even and Odd Functions

A function f is said to be even if f (−x) = f (x).

A function f is said to be odd if f (−x) = −f (x).

For example, f (x) = x2 is even and f (x) = x3 is odd; f (x) = cos x is even

and f (x) = sin x is odd; f (x) = ex is neither odd nor even.
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Properties of Even/Odd Functions

Theorem (11.3.1: Properties of Even/Odd Functions)

The product of two even functions is even.

The product of two odd functions is even.

The product of an even function and an odd function is odd.

The sum (difference) of two even functions is even.

The sum (difference) of two odd functions is odd.

If f is even, then
∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx.

If f is odd, then
∫ a

−a
f (x)dx = 0.
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Fourier Cosine Series

Definition (11.3.1: Fourier Cosine Series)

The Fourier series of an even function on the interval (−p, p) is the

cosine series

f (x) =
a0

2
+

∞
∑

n=1

an cos
nπ

p
x

where

a0 =
2

p

∫ p

0

f (x)dx and an =
2

p

∫ p

0

f (x) cos
nπ

p
xdx
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Fourier Sine Series

Definition (11.3.1: Fourier Sine Series)

The Fourier series of an odd function on the interval (−p, p) is the sine

series

f (x) =
∞
∑

n=1

bn sin
nπ

p
x

where

bn =
2

p

∫ p

0

f (x) sin
nπ

p
xdx
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Example 1: Expansion in a Sine Series

Expand f (x) = x, −2 < x < 2 in a Fourier series.
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Example 2: Expansion in a Sine Series

Expand the function

f (x) =

{

−1, −π < x < π
1, 0 ≤ x < π

in a Fourier series.
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Gibbs Phenomenon

If we process the function term-by-term...
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Eigenvalues and Eigenfunctions (1/4)

Orthogonal functions arise in the solution of differential equations.

An orthogonal set of functions can be generated by solving a

certain kind of two-point bounrady-value problem involving a linear

2nd-order DE containing a parameter λ.
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Eigenvalues and Eigenfunctions (2/4)

Example

The boundary-value problem

y′′ + λy = 0, y(0) = 0, y(L) = 0 (3)

possesses nontrivial solutions only when the parameter λ took on the

values λn = n2π2/L2, n = 1, 2, 3, . . ., called eigenvalues.

The corresponding nontrivial solutions yn = c2 sin(nπx/L), or simply

yn = sin(nπx/L), are called the eigenfunctions of the problem. (Check

page 215, Example 2, Section 5.2, on the textbook.)
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Eigenvalues and Eigenfunctions (3/4)

Example

The boundary-value problem

y′′ − 2y = 0, y(0) = 0, y(L) = 0

only possesses trivial solution y = 0 since λ = −2 is not an eigenvalue.
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Eigenvalues and Eigenfunctions (4/4)

Example

The boundary-value problem

y′′ +
9π2

L2
y = 0, y(0) = 0, y(L) = 0

possesses a nontrivial solution y3 = sin(3πx/L) since λ = 9π2/L2 is an

eigenvalue. Furthermore, y3 = sin(3πx/L) is an eigenfunction.

Remark

The set of trigonometric functions generated by this BVP, i.e.,

{sin(nπx/L)}, n = 1, 2, 3, . . ., is an orthogonal set of functions on the

interval [0, L] and is used as the basis for the Fourier sine series.
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Example 1: Eigenvalues and Eigenfunctions

Solve the boundary-value problem

y′′ + λy = 0, y′(0) = 0, y′(L) = 0 (4)
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Regular Sturm-Liouville Problem (1/3)

The problems in Eqs. (3) and (4), i.e.

y′′ + λy = 0, y(0) = 0, y(L) = 0

and

y′′ + λy = 0, y′(0) = 0, y′(L) = 0

are special cases of an important general two-point BVP.

Let p, q, r and r′ be real-valued functions continuous on an interval

[a, b], and let r(x) > 0 and p(x) > 0 for every x in the interval. Then

Solve :
d

dx
[r(x)y′] + (q(x) + λp(x))y = 0 (5)

Subject to :

{

A1y(a) + B1y′(a) = 0

A2y(b) + B2y′(b) = 0
(6)

is said to be a regular Sturm-Liouville problem.
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Regular Sturm-Liouville Problem (2/3)

The BVPs in Eqs. (3) and (4), i.e.

y′′ + λy = 0, y(0) = 0, y(L) = 0

and

y′′ + λy = 0, y′(0) = 0, y′(L) = 0

are regular Sturm-Liuoville problems.

The DE (5) is linear and homogeneous. The boundary conditions in

Eqs. (6) are also homogeneous.

A boundary condition such as Ay(b) + By′(b) = C, where C is a

nonzero constant, is nonhomogeneous.
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Regular Sturm-Liouville Problem (3/3)

A BVP that consists of a homogeneous linear DE and homogeneous

BCs is said to be a homogeneous BVP; otherwise, it is

nonhomogeneous.

The BCs Eqs. (6) are referred to as separated since each condition

involves only a single boundary point.

{

A1y(a) + B1y′(a) = 0

A2y(b) + B2y′(b) = 0

Because a regular Sturm-Liouville problem is a homogeneous BVP; it

always possess the trivial solution y = 0.
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Properties of Regular S-L Problem

Theorem (11.4.1: Properties of Regular S-L Problem)

(a) There exist an infinite number of real eigenvalues that can be

arranged in increasing order λ1 < λ2 < λ3 < · · · < λn < · · · such

that λn → ∞ as n → ∞.

(b) For each eigenvalue there is only one eigenfunction (except for

nonzero constant multiples).

(c) Eigenfunctions corresponding to different eigenvalues are linearly

independent.

(d) The set of eigenfunctions corresponding to the set of eigenvalues

is orthogonal with respect to the weight function p(x) on the

interval [a, b].
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Example 2: A Regular Sturm-Liouville Problem

Solve the boundary-value problem

y′′ + λy = 0, y(0) = 0, y(1) + y′(1) = 0
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Homework

Exercises 11.1: 4, 9.

Exercises 11.2: 6, 11.

Exercises 11.3: 8, 15, 28, 35.

Exercises 11.4: 1.
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