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Initial-Value Problem

For a linear differential equation, an nth-order initial-value problem is

Solve:
4" a1 d
M@ﬁ +an,1(x)# ot al(x)d—i} + ao(x)y = g(x)
Subject to:
y(x0) = yo0, ¥ (x0) =1, ..., y("_l)(xo) = Yn—1

@ For this problem we seek a function defined on some interval I,
containing xo, that satisfies the differential equation and the n
initial conditions specified at xo: y(xo) = yo, ¥’ (x0) = y1, - - - »
YD (x0) = yuo1.
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Existence of a Unique Solution (1/2)

Theorem (4.1.1: Existence of a Unique Solution)

Let a,(x),ay—1(x),--- ,ai(x),a0(x) and g(x) be continuous on an interval
I, and let a,(x) # O for every x in this interval. If x = xq is any point in
this interval, then a solution y(x) of the initial value problem

Solve:

dny dn—]y dy -
an(x )d o T an— 1(x )W +"’+al(x)a + ap(x)y = g(x)
Subject to:
y(x0) = yo, Y (x0) = y1, .-, YV (x0) = yui

exists on the interval and is unique.
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Existence of a Unique Solution (2/2)

Remark

The requirements in Theorem 4.1.1 that a;(x),i = 1,2,....n be
continuous and a,(x) # 0 for every x in I are both important.
Specifically, if a,(x) = 0 for some x in the interval, then the solution of a
linear IVP may not be unique or even exist.

Example
Due to Theorem 4.1.1, the initial-value problem
3y +5y" =y +Ty=0, (1) =0, y(1) =0, y'(1) = 0

has a unique solution y = 0 on any interval containing x = 1.
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Example 2: Unique Solution of an IVP

The function
y=3e" +e > —3x (1)
is a solution of the initial-value problem
Y' =4y =12x, y(0) =4, y'(0) = 1 (2)

Since ax(x) = 1 # 0 on any interval I containing x = 0, the given
function (1) is a unique solution of (2) on the interval I.
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Boundary-Value Problem

A problem such as

Solve:
d*y dy

az(x)ﬁ +ay(x) o1 ap(x)y = g(x)

Subject to:
y(a) = yo, y(b) =y
is called a boundary-value problem (BVP).

The prescribed values y(a) = yp and y(b) = y; are called bounrady
conditions (BCs).
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Boundary Conditions

For a 2nd-order DE, the pairs of boundary conditions could be

y(a) =yo, y(b) =y
y'(a) = o,
y(a) = yo,
y'(a) =yo, Y (b)

~— —

y(b) =y
y'(b) =y
= yl

where yo and y; denote arbitrary constants.

Remark

A BVP can have many, one, or no solutions.
(An example is shown in the next slide.)
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A BVP Can Have Many, One, or No Solutions

The two-parameter family of solutions of the differential equation

X"+ 16x = 0is x = ¢y cos 4t + ¢, sin 4t.
@ If x(0) = x(3) = 0, then x” 4 16x = 0 has infinitely many solutions.
@ If x(0) = x(§) = 0, the DE x” + 16x = 0 as a unique solution x = 0.
@ Ifx(0) =0, x(5) = 1, the DE x” + 16x = 0 has no solution.

solutions of the DE
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Homogeneous Equations

A linear nth-order differential equation of the form

dny dnfly dy _
an(x )ﬁ + ap—1(x )a’x”—l + - +a1(x)dx+a0(x)y—0 (3)

is said to be homogeneous, whereas an equation

n n—1
an(x >Zf+ an (x )anj+---+a1(X>%+ao(X)y=g(x) @

with g(x) not identically zero, is said to be nonhomogeneous.

Remark

To solve a nonhomogeneous linear equation (4), we must first be able
to solve the associated homogeneous equation (3).
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Superposition Principle (1/2)

Theorem (4.1.2: Superposition Principle - Homogeneous
Equations)

Letyy,ys,- -+, be solutions of the homogeneous nth-order DE
dny dn—ly dy
an(x )ﬁ +ap—1(x )dx”—l +-~-+a1(x)a +ap(x)y=0

on an interval I. Then the linear combination

y =cyi(x) + coya(x) + - - - + cove(x)

where the c;, i = 1,2, - - -

,k are arbitrary constants, is also a solution
on the interval.
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Superposition Principle (2/2)

Corollary

A constant multiple y = c1y,(x) of a solution y;(x) of a homogeneous
linear DE is also a solution.

Thus, a homogeneous linear DE always possesses the trivial solution
y=0.

Example (4: Superposition — Homogeneous DE)

The function y; = x” and y, = x” Inx are both solutions of the
homogeneous linear equation x*y"” — 2xy’ + 4y = 0 on the interval
(0, 00).

Thus, y = ¢;1x” + c»x” Inx is also a solution of the equation on the
interval (0, c0).
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Linear Dependence/Independence (1/2)

Definition (4.1.1: Linear Dependence/Independence)

A set of functions fi (x), f2(x), - - - ,fa(x) is said to be linearly dependent
on an interval I if there exist constants, ¢, ¢y, - - , ¢,, not all zero, such
that

cifi(x) + eafa(x) + -+ cufu(x) =0
for every x in the interval.

If the set of functions is not linearly dependent on the interval, it is said
to be linearly independent.
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Linear Dependence/Independence (2/2)

Remark

In other words, a set of functions is linearly independent on an interval
I if the only constants for which

cifi(x) + c2fa(x) + -+ + cafa(x) = 0

for every x in the interval arec; = c; = --- = ¢, = 0.
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Example 5: Linear Dependent Set of Functions
The set of functions
filx) =cos’x, fo(x) =sin’x, fi(x) =sec’x, fu(x) = tan’x
is linearly dependent on the interval (—7/2,7/2) since
1-cos’x+1-sin®x+ (—1) -sec’x+1-tan’x =0

Herewe have ¢y =1,c0 = 1,c3 = —1,¢c4 = 1.
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Example 6: Linear Dependent Set of Functions
The set of functions

fx) =vVx+5, Hx)=Va+5x filx)=x—1, falx)=x
is linearly dependent on the interval (0, ) since

fx) =1-fi(x) +5-f(x) +0-fa(x)

Here we have ¢y = 1,c0 = —1,¢3 = 5,¢4 = 0.
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Wronskian

Theorem (4.1.2: Wronskian)

Suppose each of the functions fi(x), f>(x),- - -, fu(x) possesses at least
n — 1 derivatives. The determinant

fi f2 R/

o h S
W(fhfz:"' )fl’l) = : . .

fl(nfl) fz(nfl) . fn(nfl)

is called the Wronskian of the functions.
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Criterion for Linearly Independent Solutions

Theorem (4.1.3: Criterion for Linearly Independent Solutions)

Letyy,ys,--- ,y, be solutions of the homogeneous nth-order DE
dny dn—ly dy
an(x )ﬁ + ap—1(x )W + - +a1(x)a +ap(x)y=0
on an interval I.

Then the set of solutions is linearly independent on I if and only if

W(y17y27"' 7yn) 7é 0

for every x in the interval.
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Fundamental Set of Solutions (1/2)

Definition (4.1.3: Fundamental Set of Solutions)

Any set yi,y,,- -+, y, Of n linearly independent solutions of the
homogeneous linear nth-order DE

da’ a1 d
: Tt ta® T +a@y =0
dx
on an interval I is said to be a fundamental set of solution on the
interval.
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Fundamental Set of Solutions (2/2)

Theorem (4.1.4: Existence of a Fundamental Set)

There exists a fundamental set of solutions for the homogeneous
linear nth-order DE

d ar! d
an(x )—y—i- an—1(x )T_)l]+-~-+a1(x)d—i+ao(x)y:0

on an interval I.
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General Solution — Homogeneous Equations

Theorem (4.1.5: General Solution — Homogeneous Equations)

Letyy,ys, -+ ,y, be a fundamental set of solutions of the
homogeneous linear nth-order DE

n n—1 d
a"(x)f); +a,,_1(x)x7_y g0 —i—al(x)d—i +ap(x)y=0

on an interval I. Then the general solution of the equation on the
interval is

y = ciyi1(x) + c2y2(x) + -+ + cayn(x)
where the ¢;, i = 1,2, --- ,n are arbitrary constants.
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Example 7: General Solution of a Homogeneous DE

The functions y; = ¢* and y, = ¢~3* are both solutions of the
homogeneous linear equation y” — 9y = 0 on the interval (—o0, ).

(83X)/l_9e3x:963x_9e3x:0

and

Since the Wronskian

e e

3 -3
W(e xve x>: 3e3x _36—3)6

— 640

for every x, the functions y; and y, form a fundamental set of solutions
and y = c;e* + c,e ¥ is the general solution of the equation on the
interval.
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Example 7: General Solution of a Homogeneous DE

The function y = 4 sinh 3x — 5¢** is a solution of the above DE

Y' =9 =0

3x _ ,—3x " 3x _ ,—3x
<4.62"’—5e3X> —9. (4"’26—5e3X> =0

This solution can be written as the form of y = ¢;e* + c,e™3* with
cp=2and ¢, = 7.
It is indeed a linear combination of a fundamental set of solutions

e3x’ e—3x.

since
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Example 8: A Solution Obtained from a General Sol.

The functions y; = e*, y, = ¢*, y3 = ¢** satisfy the 3rd-order equation

y/// _6y// + lly/ _ 6y — 0

Since
e* €2x e3x
W(e*, ¥, ) = | & 2¢% 3¢ | =26 £0

e 4e* 9

for every x, the functions yq, y,, and y; form a fundamental set of
solutions on (—oo, c0).

Thus, y = c1e* + c¢* + ¢3¢ is the general solution of the DE on the
interval.
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General Solution — Nonhomogeneous Equations

Theorem (4.1.6: General Solution — Nonhomogeneous
Equations)

Lety, be any particular solution of the nonhomogeneous linear
nth-order differential equation (4) on an interval I, and let y,,y», -+ , yn

be a fundamental set of solutions of the associated homogeneous
differential equation (3) on I.

Then the general solution of the equation on the interval is

y = cy1(x) + caya(x) + - + cnyn(x) +3p

where the ¢;, i = 1,2, --- ,n are arbitrary constants.
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Complementary Function

The general solution of a nonhomogeneous linear equation consists of
the sum of two functions:

Yy = Ye(x) + yp(x)

The linear combination y.(x) = c1y1(x) 4+ cay2(x) + - - - + cuyn(x), which is
the general solution of the homogeneus DE, is called the
complementary function for the nonhomogeneous DE.
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Remark

To solve a nonhomogeneous linear DE, we first solve the associated

homogeneous equation and then find any particular solution of the
nonhomogeneous equation.

The general solution of the nonhomogeneous equation is then

y = complementary function + any particular solution = y. +y,
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Example 10: General Sol. of a Nonhomogeneous DE

It can be shown that the function

is a particular solution of the nonhomogeneous equation
y" —6y" + 11y — 6y = 3x (5)

and
Ve = cre’ + 6™ + 3

is the general solution of the associated homogeneous equation.

Thus, the general solution of (5) is given by

1
R e R
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Superposition Principle — Nonhomogeneous Eqgs

Theorem (4.1.7: Superposition Principle — Nonhomogeneous
Egs)

Lety, ,yp, -+ ,¥p be particular solutions of the nonhomogeneous
linear nth-order DE (4) on an interval I corresponding to k distinct

functions g1, g2, - - , 8. Thatis, suppose y, denotes a particular
solution of the corresponding DE

dny dn—ly

d,,+n1() T+t ai(x)

an(x) d—1

wherei=1,2,--- ,k.
Theny, = yp, (x) 4 yp,(x) + - - - + yp, (x) IS @ particular solution of

% + ap(x)y = gi(x)

da’ a1 d
an(x)ﬁ—kan_l(x) dx”—)l)—i_' ' -+a1(x)d—i+ao(X)y = g1(x)+g2(x)+- - -+gk(x)
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Example 11: Nonhomogeneous DE

It is shown that

yp, = —4x* is a particular solution of y” — 3y’ + 4y = —16x* + 24x — 8

¥y, = €™ is a particular solution of y” — 3y’ + 4y = 2¢*
yp, = xe* is a particular solution of y" — 3y’ + 4y = 4xe* — ¢*

Thus,
Y=Yp +Ypr T Vpys = —4x% + & + xé*
is a solution of

V' =3y +4y = —16x% + 24x — 8 + 2> + 4xe* — &

Huei-Yung Lin (RVL, CCUEE) Differential Equations Section 4.1

29/89



Remarks

A dynamic system whose mathematical model is a linear nth-order DE

an(l)y(") + an—l(t)y(n_l) + e+ Cll(t)y, +ap(t)y = g(1)

is said to be an nth-order linear system.

@ The n time-dependent functions y(z),y' (1), ...,y" V() are the
state variables of the system. Their values at some time ¢ give
the state of the system.

@ The function g(z) is called the input function, forcing function,
or excitation function.

@ A solution y(r) of the DE is said to be the output or response of
the system.
Under the conditions stated in Theorem 4.1.1, the response y(¢) is
uniquely detemined by the input and the state of the system prescribed
at a time 1, — i.e., by the initial conditions y(ty), ' (to), . . . , "~V (o).
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Reduction of Order

Suppose that y; denotes a nontrivial solution of
ar (x)y" + a1 (x)y’ + ap(x)y = 0
and that y; is defined on an interval 1. We seek a second solution, y,,
so that y, v, is a linearly independent set on the interval I.
Is It Possible? How to Achieve This?
@ If y; and y, are linearly independent, then y,/y; is non-constant.

@ Thatis, y»(x)/y1(x) = u(x) or ya(x) = u(x)y; (x).
@ The function «(x) can be found by substituting

y2(x) = u(x)y1(x)

into the given DE.

@ This method is called reduction of order because we must solve
a linear 1st-order DE to find u.
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Example 1: A Second Solution by Reduction of Order
Given that y; = ¢" is a solution of
Y'=y=0

on the interval (—oo, ), use reduction of order to find a second
solution y,.
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Example 2: A Second Solution

The function y; = x? is a solution of
¥y —3xy +4y=0

Find the general solution of the DE on the interval (0, o).
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Auxiliary Equation
Consider the second-order differential equation

ay' +by +cy=0 (6)

where a, b, and ¢ are constants. The associated auxiliary equation of
the DE is defined as

am* +bm+c=0 (7)

Let m; and m; be two roots of Eq. (7), then the solutions of Eq. (6) are
given by

y = c1™* 4 ™ if m; and m, are real and distinct
y = c1e™" + cpxe™* if m; and my are real and equal

= e™(cq cos Bx + ¢psin Bx)  if m; and m, are complex conjugates
y
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If we try to find a solution of the form y = ¢™*, then Eq. (6) becomes
"™ (am* + bm+¢) =0 (8)

Since ¢™ # 0 for all x, we have the auxiliary equation (7) hold.
Case [: Distinct Real Roots If Eqg. (7) has two distinct real roots, then
we find two solutions y; = ¢™* and y, = ¢™*, which are
linearly independent. Thus, the general solution of Eq. (6)
is given by
y = Clemlx 4 Czemzx

Case Il: Repeated Real Roots If m; = my, one solution is y; = ¢™*,
and the second solution can be obtained by reduction of
order described in the previous section as y, = xe™*.
Thus, the general solution of Eq. (6) is given by

y = c1e™* 4+ coxe™”*
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Case lll: Conjugate Complex Roots If m; and m; are complex
conjugates, let m; = o + i and my = a — i3. Since they
are distinct, the general solution is

(a+if)x + c2e(o¢7iﬁ)x (9)

From the Euler’s formula ¢ = cos # + isin 6, we have

e'P* = cos Bx + isin Bx and e~ = cos Sx — isin Sx, which
implies ¢/%* 4 ¢7* = 2 cos Bx and €/ — e=P* = 2isin Bx. If
we choosec; =c;=1andc; =1,¢c0 = —1in Eq. (9),
then two linearly independent solutions are given by

Y = e(a+i5)x + e(afiﬁ)x = 2™ cos Bx

y=rcie

and
yy = (@B _ plaiB)x — 2jo0% gin B

Thus, the general solution is given by

y = c1e* cos Bx + cre™ sin fx = €™*(c) cos fx + ¢; sin Sx)
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Example 1: Second-Order DEs

Solve the following differential equations.

(a) 2y" -5y -3y =0 (b) y'—10y' +25y =0 () YV'+4/+7y=0
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Example 2: An Initial-Value Problem

Solve
4y" +4y +17y =0, y(0)=—1, y'(0) =2
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Higher-Order Equations

To solve an nth-order differential equation
any™ + a1y + -+ ay’ + @y + agy = 0

where the a;,i = 0,1,2,...,n are real constants, we must solve an
nth-order polynomial equation

apym + ap_ym" '+ am® +am+ay =0

When m; is a root of multiplicity & of an nth-order auxiliary equation,
then the linearly independent solutions are

em]x7 Xemm‘t xZem]Xv . xk*lem]x

)
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Example 3: Third-Order DE

Solve
y/// + 3y// _ 4y — O
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Example 4: Fourth-Order DE

Solve y )
dy . d%y
AT it 4 =0
g Y
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Method of Undetermined Coefficients (1/2)

The method of undetermined coefficients for solving a
nonhomogeneous linear DE

any" + a1y 4 ary + agy = g(x) (10)

is to guess the form of y, according to the function g(x).

The general method is limited to linear DEs such as Eq. (10) where
@ the coefficients a;,i = 0, 1, ..., n are constants and

@ g(x) is a constant, a polynomial, an exponential function, a sine or
cosine function, or finite sums and products of these functions.
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Method of Undetermined Coefficients (2/2)

The set of functions that consists of constants, polynomials,
exponentials, sines, and cosines has the property that derivatives of
their sums and products are again sums and products of constants,
polynomials, exponentials, sines, and cosines.

Because the linear combination of derivatives
any, + an_1y,§”_1) + -+ ary, + aoy,

must be identical to g(x), it is reasonable to assume that y, has the
same form as g(x).
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Example 1: General Sol. Using Undetermined Coeffs

Solve
Y44y —2y=2x* —3x+6
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Example 2: Particular Solution Using Undetermined
Coefficients

Find a particular solution of

y' =y +y=2sin3x
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Example 3: Forming y, by Superposition

Solve
y' =2y — 3y =4x — 5+ 6xe™
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Example 4: A Glitch in the Method

Find a particular solution of

y' =5y +4y = 8¢
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Trial Particular Solutions

Forcing Term f(¢) | Trial Forced Solution xs(7)

k A

t At+B

t2 A +Bt+C

" A"+ BV Y+ Z
sin wt, coswt A sinwt + Bcoswt

e sinwt, e coswt | e?'(Asinwt + Bcoswt)
te?! sinwt, te coswt | te?'(A sinwt + B cos wt)
+¢(C sinwt + D cos wt)
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Trial Particular Solutions

Case |: No function in the assumed particular solution is a
solution of the associated homogeneous differential
equation.

Form Rule for Case |: The form of y, is a linear combination of all
linearly independent functions that are generated by
repeated differentiations of g(x).

Case II: A function in the assumed particular solution is also a
solution of the associated homogeneous differential
equation.

Form Rule for Case Il: If any y, contains terms that duplicate terms in
ye, then that y, must be multiplied by x", where n is the
smallest positive integer that eliminates that duplication.
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Example 5: Forms of Particular Solutions — Case |

Determine the form of a particular solution of

(@)Y — 8y +25y =5x e —Te™* (b) y' + 4y = xcosx
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Example 6: Forming y, by Superposition — Case |

Determine the form of a particular solution of

y' — 9y + 14y = 3x* — 5sin2x + Txe™
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Example 7: Particular Solution — Case Il

Find a particular solution of

y”—2y’—|—y=ex
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Example 8: An Initial-Value Problem

Solve
Yy +y=4x+10sinx, y(r)=0,y(r) =2
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Example 10: Third-Order DE — Case |

Solve

y//l +y// — e}( COS X
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Example 11: Fourth-Order DE — Case Il

Determine the form of a particular solution of

y(4) +y/// =1 — 2
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Variation of Parameters (1/2)

How to Find a Particular Solution?

For the linear second-order differential equation

Y+ Px)y' + Q(x)y = f(x) (11)
we seek a particular solution of the form

Yp = ui(X)y1(x) + uz(x)y2(x)

where y; and y, form a fundamental set of solutions on I of the
associated homogeneous form of

ax(x)y" + a1 (x)y’ + ao(x) = g(x)
The functions u; and u, are given by solving the system

! /
yiuy +yauy, =0 12
{ Viud, + vty = f(x) (12)
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Variation of Parameters (2/2)

The solutions «} and u, can be expressed in terms of determinants:

w yof (x) Wr  yif(x
=y =~~~ and u;:W:“S) (13)
where
Yoy yi O
- , W, = 14
‘y’l Y ‘f yz ? ’y’l f(X>’ a4

@ The linear system (12) with two unknowns | and u}, can be solved
by Cramer’s rule.

@ The function u; and u, are found by integrating the results in (13).
@ The determinant W is the Wronskian of y; and y;.

@ By linear independence of y; and y, on I, we know that
W (y1(x),y2(x)) # 0 for every x in the interval.
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Lety = u1y1 + uoy», then
Y =y + uhyr + uhys + urys
and
Y =y Fuyyy +uiyr + Yy + uys + upyh + upys + uzyy
Thus, the left hand side of Eq. (11) becomes
Y +PY +0y = u ] +ua ]

Fyiuf A iy A+ yauy + urys
+Puyy1 + uzyo] + uyyy + uzy)

d
= 5['/1% + uhy] + Pluhy1 + uhya] 4+ uly| + uhyh

If we further let )y, + uyy, = 0, then Eq. (11) becomes'
uyy + Y = f(x)

'An additional constraint posed on u; and us.
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Summary of The Method (Variation of Parameters)

Procedure of solving the differential equation
axy” + a1y’ + agy = g(x)

using variation of parameters:
@ Find the complementary function y. = c;y; + c2ys .
@ Compute the Wronskian W(y(x), y2(x)).
© Put the equation into the standard form (dividing by a,)

'+ Py + 0y =f(x)

@ Find u; and u; by integrating «} = W, /W and u}, = W,/W, where
W, and W, are defined as in Eq. (14).

© A particular solution is y, = uy + uzy».

© The general solution of the equation is then y = y. + y,.
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Example 1: General Solution Using VOP

Solve
Y =4y +4y = (x+ D)™
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Example 2: General Solution Using VOP

Solve
4y" + 36y = csc3x
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Higher-Order Equations

Given a linear nth-order differential equation in the standard form

Y 4 Puc )y 4 PL )Y+ Po()y = £ ()

Ye =C1y1 +C2y2 + -+ Cudn
is the complementary function, then a particular solution is

Yp = wr(X)y1(x) + u2(x)y2(x) 4 - - 4 1 (x)yn (%)

where uj, k= 1,2,--- ,n are determined by
K w
where W is the Wronskian of y;,y,,--- ,y, and W is the determinant

obtained by replacing the kth column of the Wronskian by the column
consisting of the right-hand side of the equations,
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Remarks

@ Variation of parameters has a distinct advantage over the
method of undetermined coefficients in that it will always yield
a particular solution y, provided that the associated homogeneous
equation can be solved.

@ Variation of parameters, unlike undetermined coefficients, is
applicable to linear DE with variable coefficients.?

2Check Example 5 in Section 4.7.
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Cauchy-Euler Equation

A linear differential equation of the form

n n—1

n n—1 y dy _
anX e + ap_1x o] + -+ alx% + apy = g(x)
where the coefficients a,,a,_1,- - - ,ay are constants, is known as a

Cauchy-Euler equation.
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2nd-Order Homogeneous Cauchy-Euler Equation (1)

For the second-order homogeneous Cauchy-Euler equation

2 dPy | dy
ﬁ+ij+Cy_0 (15)

If we substitute y = x™, where m is to be determined, the 2nd-order
equation becomes?®

(am(m — 1) +bm+c)x" =0

Thus, y = x™ is a solution of the DE whenever m is a solution of the
auxiliary equation

am(m —1)+bm+c=0

3
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2nd-Order Homogeneous Cauchy-Euler Equation (2)

There are three different cases to be considered, depending on

whether the roots of this quadratic equation are real and distinct, real
and equal, or complex.

Case I: Distinct Real Roots. Let m; and m, denote the real roots of

am(m — 1) + bm + ¢ = 0 such that m; # m,. Then the
general solution of Eq. (15) is

y=c1X" + cox™

Case lI: Repeated Real Roots. Let m denotes the repeated real root of
the characteristic equation. Then the general solution of
Eqg. (15)is

y=c1X" 4+ X" Inx
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2nd-Order Homogeneous Cauchy-Euler Equation (3)

Case lll: Conjugate Complex Roots. If the roots of the characteristic
equation are the conjugate pair o + i3, where aoand 5 > 0
are real. Then the general solution of Eq. (15) is

y = x%[c1 cos(BInx) + ¢; sin(S Inx)]
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Since y = x™ and y = x™ are both solutions of Eq. (15) and m; # my,
they form a fundamental set of solutions. Thus, the general solution is

y = c1X™ + ™
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a—2>b

2a
Since one solution is y; = x™, the other solution can then be obtained
from reduction of order.

The repeated real roots of the auxiliary equation is m =
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If the conjugate complex roots of the auxiliary equation are « + i, then
a solution of Eq. (15) is
y= Clanrﬁi + szozfﬁi _ xa(clxﬁi + szfﬁz‘)

By Euler’s formula,

xP = ()P = ¢PIn* = cos(B1Inx) 4 isin(SInx) (16)

x~¥ = cos(B1Inx) — isin(3Inx) (17)
Letcy =1,co =1and ¢; = —i,c; = i, we have 2 cos(S Inx) and
2sin(B1nx) in the complex number terms (16) and (17).4

That is, we can choose cos(/5Inx) and sin(/3 Inx) as two independent
solutions (their Wronskian is not zero).®

Thus, the general solution is
y = x%cicos(f1Inx) + ¢z sin(fInx)]

4To get real solutions!
5This is something like change of basis in linear algebra.
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Example 1: Distinct Roots

Solve
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Example 2: Repeated Roots

Solve

& d
4x27}2} +38

y
il -0
d T

Huei-Yung Lin (RVL, CCUEE) Differential Equations Section 4.7 72/89



Example 3: An Initial-Value Problem

Solve

1
4 + 17y =0, y(1)=-1,y(1) = -5
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Example 4: Third-Order Equation

Solve 3 2
3 2 Tx
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Example 5: Variation of Parameters

Solve
x2y// o 3xy/ + 3y = 2x4ex
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Initial-Value Problem of Nonhomogeneous DE

The solution y(r) of the second order initial-value problem
Y+ P()y +0(x)y =f(x), y(x0) =y, ¥(x0) =y (18)
can be expressed as the superposition of two solutions:
y(x) = yi(x) + yp(x)

where y;(x) is the solution of the associated homogeneous DE with
nonhomogeneous initial conditions

Y+ Px)y +0(x)y =0, y(xo)=yo0, ¥(x0) =y (19)

and y,(x) is the solution of the nonhomogeneous DE with
homogeneous initial condisitions

Y+ P +Q(x)y =f(x), y(x0) =0, »(x)=0. (20)
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Remarks

@ If the coefficients P(x) and Q(x) are constants, then the IVP (19),
i.e.,
Y +PX)y +0(x)y =0, y(xo) =0, (%)=
can be solved by the method described in Section 4.3.
@ Forthe IVP (20), i.e.,

Y+ Px)y +Q(x)y=f(x), y(xo)=0, y(x)=0

the zero initial conditions are given. It can be thought as the
description of a physical system which is initially at rest. Thus, the
solution of the IVP (20) is sometimes called a rest solution.

@ That is, the solution of the IVP of nonhomogeneous DE (18) is
given by the solutions of “zero forcing term (19)” + “zero initial
condition (20)".
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Green’s Function (1/2)
If y1(x) and y,(x) forms the fundamental set of solutions of the DE
Y'+P)Y +0(x)y =0 (21)
then a particular solution of the nonhomogeneous DE
Y'+ P(x)y + Q(x)y = f(x) (22)
can be found by variation of parameters (Section 4.6), i.e.,

Yp(x) = w1 (x)y1(x) + uz(x)y2(x) (23)

R 2150/ ACO PR 1C)/AC) o) — | Y1) y2(x)
o) = 0 =2 — | il

on an interval I where all functions make sense.
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Green’s Function (2/2)

If x and xy are numbers in I, then (23) can be written as

yp(x) = yi(x) /X Mdr + y2(x) /x n(OF) dt

w W) w W)
_ /x: A l‘f;c()ty;(t)f(t)dw /x : yl(gﬁ)(x)f(t)dt

where W(r) = W(yi(1),y2(t)) is the Wronskian.
The above equation can be rewritten as

yp(x) = /X G(x,t)f (r)dt

X0

where
yi(1)y2(x) — y1(x)y2(2)

G(x,t) = W)

is called the Green’s function for the differential equation (18).
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Remarks

@ Observe that a Green’s function (25), i.e.,

y1(0)y2(x) = y1(x)y2(2)
W(r)

G(x, 1) =

depends only on the fundamental solutions y; (x) and y»(x) of the
associated homogeneous DE for (22) and not on the forcing
function f(x).

@ Thus, all linear second-order differential equations (22) with the
same left-hand side but with different forcing functions have the
same Green'’s function.

@ Eq. (25) can also be called as the Green'’s function for the
second-order differential operator L = D* + P(x)D + Q(x).
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Example 1: Particular Solution

Use the Green’s function to find a particular solution of

Y'—y=f)
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Solution of the IVP (20)

Theorem (Theorem 4.8.1: Solution of the IVP (20))
The function .
) = | Genra
X0

is the solution of the initial-value problem

Y+ Py +0(x)y=f(x), yxo)=0, y(x)=0.

(Note the zero initial conditions!)
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Example 3

Solve the initial-value problem

y”_y: 1/)6, y(l):07 yl(l):O
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Example 4

Solve the initial-value problem

y'+4y=x, y0)=0, »(0)=0.
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Solution of the IVP (18)

Theorem (Theorem 4.8.2: Solution of the IVP (18))
Ifyn(x) is the solution of the initial-value problem

Y+ Px)y +0(x)y =0, y(x)=yo, Y(x0)=mn
and y,(x) is the solution (26) of the initial-value problem
Y+ Px)Y +0(x)y =f(x), y(x0) =0, »(x)=0
on the interval I, then
y(x) = ya(x) + yp(x)
is the solution of the initial-value problem
Y'+ Py +0)y =f(x), y(x0) =y, ¥(x0)=y
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Proof of Theorem 4.8.2

Check the DE:
Since yj(x) is a linear combination of the fundamental solutions,
=y =y + Y, is a solution of the nonhomogeneous DE.

Check the IC:
Since yj, satisfies the initial conditions in (19) and y, satisfies the initial
condition in (20), we have

¥(x0) = yn(x0) + yp(x0) = yo +0 = yo
¥y (x0) = yj,(x0) + ¥, (x0) = y1 +0 =y

Thus, both the differential equation and initial conditions are
satisfied. O
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Remark
Eq. (19) has a forcing function, and Eq. (20) does not have any forcing
function.

According to Theorem 4.8.2, the response y(x) of a physical system
described by the IVP (18) can be separated into two different
responses, y,(x) and y,(x). That is,
y(x) = ya(x) 4 yp(x)
where
@ y,(x): response of system due to IC, y(xo) = yo,y (x0) = y1.
@ y,(x): response of system due to the forcing function f(x).
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Example 5

Solve the initial-value problem

Yy +4y=sin2x, y(0)=1, y(0)=-2. (27)
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Homework

@ Exercises 4.1: 4, 9, 26, 34.
@ Exercises 4.2: 3, 13, 20.

@ Exercises 4.3: 5, 22, 35, 41.
@ Exercises 4.4: 5, 13, 30, 38.
@ Exercises 4.6: 4, 14, 21, 26.
@ Exercises 4.7: 7, 22, 36, 38.
@ Exercises 4.8: 3, 13, 22.
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