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Initial-Value Problem

For a linear differential equation, an nth-order initial-value problem is

Solve:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x)

Subject to:

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1

For this problem we seek a function defined on some interval I,

containing x0, that satisfies the differential equation and the n

initial conditions specified at x0: y(x0) = y0, y′(x0) = y1, . . . ,

y(n−1)(x0) = yn−1.
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Existence of a Unique Solution (1/2)

Theorem (4.1.1: Existence of a Unique Solution)

Let an(x), an−1(x), · · · , a1(x), a0(x) and g(x) be continuous on an interval

I, and let an(x) 6= 0 for every x in this interval. If x = x0 is any point in

this interval, then a solution y(x) of the initial value problem

Solve:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x)

Subject to:

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1

exists on the interval and is unique.
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Existence of a Unique Solution (2/2)

Remark

The requirements in Theorem 4.1.1 that ai(x), i = 1, 2, . . . , n be

continuous and an(x) 6= 0 for every x in I are both important.

Specifically, if an(x) = 0 for some x in the interval, then the solution of a

linear IVP may not be unique or even exist.

Example

Due to Theorem 4.1.1, the initial-value problem

3y′′′ + 5y′′ − y′ + 7y = 0, y(1) = 0, y′(1) = 0, y′′(1) = 0

has a unique solution y = 0 on any interval containing x = 1.
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Example 2: Unique Solution of an IVP

The function

y = 3e2x + e−2x − 3x (1)

is a solution of the initial-value problem

y′′ − 4y = 12x, y(0) = 4, y′(0) = 1 (2)

Since a2(x) = 1 6= 0 on any interval I containing x = 0, the given

function (1) is a unique solution of (2) on the interval I.
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Boundary-Value Problem

A problem such as

Solve:

a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = g(x)

Subject to:

y(a) = y0, y(b) = y1

is called a boundary-value problem (BVP).

The prescribed values y(a) = y0 and y(b) = y1 are called bounrady

conditions (BCs).
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Boundary Conditions

For a 2nd-order DE, the pairs of boundary conditions could be

y(a) = y0, y(b) = y1

y′(a) = y0, y(b) = y1

y(a) = y0, y′(b) = y1

y′(a) = y0, y′(b) = y1

where y0 and y1 denote arbitrary constants.

Remark

A BVP can have many, one, or no solutions.

(An example is shown in the next slide.)
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A BVP Can Have Many, One, or No Solutions

The two-parameter family of solutions of the differential equation

x′′ + 16x = 0 is x = c1 cos 4t + c2 sin 4t.

If x(0) = x(π
2
) = 0, then x′′ + 16x = 0 has infinitely many solutions.

If x(0) = x(π
8
) = 0, the DE x′′ + 16x = 0 as a unique solution x = 0.

If x(0) = 0, x(π
2
) = 1, the DE x′′ + 16x = 0 has no solution.

(In the above cases, x(0) = 0 implies c1 = 0.)
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Homogeneous Equations

A linear nth-order differential equation of the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0 (3)

is said to be homogeneous, whereas an equation

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x) (4)

with g(x) not identically zero, is said to be nonhomogeneous.

Remark

To solve a nonhomogeneous linear equation (4), we must first be able

to solve the associated homogeneous equation (3).
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Superposition Principle (1/2)

Theorem (4.1.2: Superposition Principle - Homogeneous
Equations)

Let y1, y2, · · · , yk be solutions of the homogeneous nth-order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0

on an interval I. Then the linear combination

y = c1y1(x) + c2y2(x) + · · ·+ ckyk(x)

where the ci, i = 1, 2, · · · , k are arbitrary constants, is also a solution

on the interval.
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Superposition Principle (2/2)

Corollary

A constant multiple y = c1y1(x) of a solution y1(x) of a homogeneous

linear DE is also a solution.

Thus, a homogeneous linear DE always possesses the trivial solution

y = 0.

Example (4: Superposition – Homogeneous DE)

The function y1 = x2 and y2 = x2
ln x are both solutions of the

homogeneous linear equation x3y′′′ − 2xy′ + 4y = 0 on the interval

(0,∞). (Verify.)

Thus, y = c1x2 + c2x2
ln x is also a solution of the equation on the

interval (0,∞).
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Linear Dependence/Independence (1/2)

Definition (4.1.1: Linear Dependence/Independence)

A set of functions f1(x), f2(x), · · · , fn(x) is said to be linearly dependent

on an interval I if there exist constants, c1, c2, · · · , cn, not all zero, such

that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

for every x in the interval.

If the set of functions is not linearly dependent on the interval, it is said

to be linearly independent.
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Linear Dependence/Independence (2/2)

Remark

In other words, a set of functions is linearly independent on an interval

I if the only constants for which

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0

for every x in the interval are c1 = c2 = · · · = cn = 0.
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Example 5: Linear Dependent Set of Functions

The set of functions

f1(x) = cos
2 x, f2(x) = sin

2 x, f3(x) = sec
2 x, f4(x) = tan

2 x

is linearly dependent on the interval (−π/2, π/2) since

1 · cos
2 x + 1 · sin

2 x + (−1) · sec
2 x + 1 · tan

2 x = 0

Here we have c1 = 1, c2 = 1, c3 = −1, c4 = 1.
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Example 6: Linear Dependent Set of Functions

The set of functions

f1(x) =
√

x + 5, f2(x) =
√

x + 5x, f3(x) = x − 1, f4(x) = x2

is linearly dependent on the interval (0,∞) since

f2(x) = 1 · f1(x) + 5 · f3(x) + 0 · f4(x)

Here we have c1 = 1, c2 = −1, c3 = 5, c4 = 0.
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Wronskian

Theorem (4.1.2: Wronskian)

Suppose each of the functions f1(x), f2(x), · · · , fn(x) possesses at least

n − 1 derivatives. The determinant

W(f1, f2, · · · , fn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 f2 · · · fn
f ′
1

f ′
2

· · · f ′n
...

...
...

f
(n−1)
1

f
(n−1)
2

· · · f
(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called the Wronskian of the functions.
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Criterion for Linearly Independent Solutions

Theorem (4.1.3: Criterion for Linearly Independent Solutions)

Let y1, y2, · · · , yn be solutions of the homogeneous nth-order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0

on an interval I.

Then the set of solutions is linearly independent on I if and only if

W(y1, y2, · · · , yn) 6= 0

for every x in the interval.
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Fundamental Set of Solutions (1/2)

Definition (4.1.3: Fundamental Set of Solutions)

Any set y1, y2, · · · , yn of n linearly independent solutions of the

homogeneous linear nth-order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0

on an interval I is said to be a fundamental set of solution on the

interval.
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Fundamental Set of Solutions (2/2)

Theorem (4.1.4: Existence of a Fundamental Set)

There exists a fundamental set of solutions for the homogeneous

linear nth-order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0

on an interval I.
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General Solution – Homogeneous Equations

Theorem (4.1.5: General Solution – Homogeneous Equations)

Let y1, y2, · · · , yn be a fundamental set of solutions of the

homogeneous linear nth-order DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0

on an interval I. Then the general solution of the equation on the

interval is

y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

where the ci, i = 1, 2, · · · , n are arbitrary constants.
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Example 7: General Solution of a Homogeneous DE

The functions y1 = e3x and y2 = e−3x are both solutions of the

homogeneous linear equation y′′ − 9y = 0 on the interval (−∞,∞).

(e3x)′′ − 9e3x = 9e3x − 9e3x = 0

and

(e−3x)′′ − 9(e−3x) = 9(e−3x)− 9(e−3x) = 0

Since the Wronskian

W(e3x, e−3x) =

∣

∣

∣

∣

e3x e−3x

3e3x −3e−3x

∣

∣

∣

∣

= −6 6= 0

for every x, the functions y1 and y2 form a fundamental set of solutions

and y = c1e3x + c2e−3x is the general solution of the equation on the

interval.
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Example 7: General Solution of a Homogeneous DE

The function y = 4 sinh 3x − 5e3x is a solution of the above DE

y′′ − 9y = 0

since

(

4 · e3x − e−3x

2
− 5e3x

)′′

− 9 ·
(

4
e3x − e−3x

2
− 5e3x

)

= 0

This solution can be written as the form of y = c1e3x + c2e−3x with

c1 = 2 and c2 = −7.

It is indeed a linear combination of a fundamental set of solutions

e3x, e−3x.

Huei-Yung Lin (RVL, CCUEE) Differential Equations Section 4.1 22 / 89



Example 8: A Solution Obtained from a General Sol.

The functions y1 = ex, y2 = e2x, y3 = e3x satisfy the 3rd-order equation

y′′′ − 6y′′ + 11y′ − 6y = 0

Since

W(ex, e2x, e3x) =

∣

∣

∣

∣

∣

∣

ex e2x e3x

ex
2e2x

3e3x

ex
4e2x

9e3x

∣

∣

∣

∣

∣

∣

= 2e6x 6= 0

for every x, the functions y1, y2, and y3 form a fundamental set of

solutions on (−∞,∞).

Thus, y = c1ex + c2e2x + c3e3x is the general solution of the DE on the

interval.
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General Solution – Nonhomogeneous Equations

Theorem (4.1.6: General Solution – Nonhomogeneous
Equations)

Let yp be any particular solution of the nonhomogeneous linear

nth-order differential equation (4) on an interval I, and let y1, y2, · · · , yn

be a fundamental set of solutions of the associated homogeneous

differential equation (3) on I.

Then the general solution of the equation on the interval is

y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp

where the ci, i = 1, 2, · · · , n are arbitrary constants.
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Complementary Function

The general solution of a nonhomogeneous linear equation consists of

the sum of two functions:

y = yc(x) + yp(x)

The linear combination yc(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x), which is

the general solution of the homogeneus DE, is called the

complementary function for the nonhomogeneous DE.
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Remark

To solve a nonhomogeneous linear DE, we first solve the associated

homogeneous equation and then find any particular solution of the

nonhomogeneous equation.

The general solution of the nonhomogeneous equation is then

y = complementary function + any particular solution = yc + yp
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Example 10: General Sol. of a Nonhomogeneous DE

It can be shown that the function

yp = −11

12
− 1

2
x

is a particular solution of the nonhomogeneous equation

y′′′ − 6y′′ + 11y′ − 6y = 3x (5)

and

yc = c1ex + c2e2x + c3e3x

is the general solution of the associated homogeneous equation.

Thus, the general solution of (5) is given by

y = yc + yp = c1ex + c2e2x + c3e3x − 11

12
− 1

2
x
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Superposition Principle – Nonhomogeneous Eqs

Theorem (4.1.7: Superposition Principle – Nonhomogeneous
Eqs)

Let yp1
, yp2

, · · · , ypk
be particular solutions of the nonhomogeneous

linear nth-order DE (4) on an interval I corresponding to k distinct

functions g1, g2, · · · , gk. That is, suppose ypi
denotes a particular

solution of the corresponding DE

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = gi(x)

where i = 1, 2, · · · , k.

Then yp = yp1
(x) + yp2

(x) + · · ·+ ypk
(x) is a particular solution of

an(x)
dny

dxn
+an−1(x)

dn−1y

dxn−1
+· · ·+a1(x)

dy

dx
+a0(x)y = g1(x)+g2(x)+· · ·+gk(x)
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Example 11: Nonhomogeneous DE

It is shown that

yp1
= −4x2 is a particular solution of y′′ − 3y′ + 4y = −16x2 + 24x − 8

yp2
= e2x is a particular solution of y′′ − 3y′ + 4y = 2e2x

yp3
= xex is a particular solution of y′′ − 3y′ + 4y = 4xex − ex

Thus,

y = yp1
+ yp2

+ yp3
= −4x2 + e2x + xex

is a solution of

y′′ − 3y′ + 4y = −16x2 + 24x − 8 + 2e2x + 4xex − ex
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Remarks

A dynamic system whose mathematical model is a linear nth-order DE

an(t)y
(n) + an−1(t)y

(n−1) + · · ·+ a1(t)y
′ + a0(t)y = g(t)

is said to be an nth-order linear system.

The n time-dependent functions y(t), y′(t), . . . , y(n−1)(t) are the

state variables of the system. Their values at some time t give

the state of the system.

The function g(t) is called the input function, forcing function,

or excitation function.

A solution y(t) of the DE is said to be the output or response of

the system.

Under the conditions stated in Theorem 4.1.1, the response y(t) is

uniquely detemined by the input and the state of the system prescribed

at a time t0 – i.e., by the initial conditions y(t0), y′(t0), . . . , y(n−1)(t0).
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Reduction of Order

Suppose that y1 denotes a nontrivial solution of

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0

and that y1 is defined on an interval I. We seek a second solution, y2,

so that y1, y2 is a linearly independent set on the interval I.

Is It Possible? How to Achieve This?

If y1 and y2 are linearly independent, then y2/y1 is non-constant.

That is, y2(x)/y1(x) = u(x) or y2(x) = u(x)y1(x).

The function u(x) can be found by substituting

y2(x) = u(x)y1(x)

into the given DE.

This method is called reduction of order because we must solve

a linear 1st-order DE to find u.
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Example 1: A Second Solution by Reduction of Order

Given that y1 = ex is a solution of

y′′ − y = 0

on the interval (−∞,∞), use reduction of order to find a second

solution y2.
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Example 2: A Second Solution

The function y1 = x2 is a solution of

x2y′′ − 3xy′ + 4y = 0

Find the general solution of the DE on the interval (0,∞).
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Auxiliary Equation

Consider the second-order differential equation

ay′′ + by′ + cy = 0 (6)

where a, b, and c are constants. The associated auxiliary equation of

the DE is defined as

am2 + bm + c = 0 (7)

Let m1 and m2 be two roots of Eq. (7), then the solutions of Eq. (6) are

given by

y = c1em1x + c2em2x if m1 and m2 are real and distinct

y = c1em1x + c2xem1x if m1 and m2 are real and equal

y = eαx(c1 cosβx + c2 sinβx) if m1 and m2 are complex conjugates
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Formula Derivation (1/2)

If we try to find a solution of the form y = emx, then Eq. (6) becomes

emx(am2 + bm + c) = 0 (8)

Since emx 6= 0 for all x, we have the auxiliary equation (7) hold.

Case I: Distinct Real Roots If Eq. (7) has two distinct real roots, then

we find two solutions y1 = em1x and y2 = em2x, which are

linearly independent. Thus, the general solution of Eq. (6)

is given by

y = c1em1x + c2em2x

Case II: Repeated Real Roots If m1 = m2, one solution is y1 = em1x,

and the second solution can be obtained by reduction of

order described in the previous section as y2 = xem1x.

Thus, the general solution of Eq. (6) is given by

y = c1em1x + c2xem1x
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Formula Derivation (2/2)

Case III: Conjugate Complex Roots If m1 and m2 are complex

conjugates, let m1 = α+ iβ and m2 = α− iβ. Since they

are distinct, the general solution is

y = c1e(α+iβ)x + c2e(α−iβ)x (9)

From the Euler’s formula eiθ = cos θ + i sin θ, we have

eiβx = cosβx + i sinβx and e−iβx = cosβx − i sinβx, which

implies eiβx + e−iβx = 2 cosβx and eiβx − e−iβx = 2i sinβx. If

we choose c1 = c2 = 1 and c1 = 1, c2 = −1 in Eq. (9),

then two linearly independent solutions are given by

y1 = e(α+iβ)x + e(α−iβ)x = 2eαx
cosβx

and

y2 = e(α−iβ)x − e(α−iβ)x = 2ieαx
sinβx

Thus, the general solution is given by

y = c1eαx
cosβx + c2eαx

sinβx = eαx(c1 cosβx + c2 sinβx)
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Example 1: Second-Order DEs

Solve the following differential equations.

(a) 2y′′−5y′−3y = 0 (b) y′′−10y′+25y = 0 (c) y′′+4y′+7y = 0
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Example 2: An Initial-Value Problem

Solve

4y′′ + 4y′ + 17y = 0, y(0) = −1, y′(0) = 2
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Higher-Order Equations

To solve an nth-order differential equation

any(n) + an−1y(n−1) + · · ·+ a2y′′ + a1y′ + a0y = 0

where the ai, i = 0, 1, 2, . . . , n are real constants, we must solve an

nth-order polynomial equation

anmn + an−1mn−1 + · · ·+ a2m2 + a1m + a0 = 0

When m1 is a root of multiplicity k of an nth-order auxiliary equation,

then the linearly independent solutions are

em1x, xem1x, x2em1x, · · · , xk−1em1x
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Example 3: Third-Order DE

Solve

y′′′ + 3y′′ − 4y = 0
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Example 4: Fourth-Order DE

Solve
d4y

dx4
+ 2

d2y

dx2
+ y = 0
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Method of Undetermined Coefficients (1/2)

The method of undetermined coefficients for solving a

nonhomogeneous linear DE

anyn + an−1y(n−1) + · · ·+ a1y′ + a0y = g(x) (10)

is to guess the form of yp according to the function g(x).

The general method is limited to linear DEs such as Eq. (10) where

the coefficients ai, i = 0, 1, . . . , n are constants and

g(x) is a constant, a polynomial, an exponential function, a sine or

cosine function, or finite sums and products of these functions.
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Method of Undetermined Coefficients (2/2)

The set of functions that consists of constants, polynomials,

exponentials, sines, and cosines has the property that derivatives of

their sums and products are again sums and products of constants,

polynomials, exponentials, sines, and cosines.

Because the linear combination of derivatives

anyn
p + an−1y(n−1)

p + · · ·+ a1y′p + a0yp

must be identical to g(x), it is reasonable to assume that yp has the

same form as g(x).
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Example 1: General Sol. Using Undetermined Coeffs

Solve

y′′ + 4y′ − 2y = 2x2 − 3x + 6
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Example 2: Particular Solution Using Undetermined

Coefficients

Find a particular solution of

y′′ − y′ + y = 2 sin 3x
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Example 3: Forming yp by Superposition

Solve

y′′ − 2y′ − 3y = 4x − 5 + 6xe2x
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Example 4: A Glitch in the Method

Find a particular solution of

y′′ − 5y′ + 4y = 8ex
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Trial Particular Solutions

Forcing Term f (t) Trial Forced Solution xf (t)

k A

t At + B

t2 At2 + Bt + C

tn Atn + Btn−1 + · · ·+ Yt + Z

sinωt, cosωt A sinωt + B cosωt

eσt
sinωt, eσt

cosωt eσt(A sinωt + B cosωt)

teσt
sinωt, teσt

cosωt teσt(A sinωt + B cosωt)
+eσt(C sinωt + D cosωt)
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Trial Particular Solutions

Case I: No function in the assumed particular solution is a

solution of the associated homogeneous differential

equation.

Form Rule for Case I: The form of yp is a linear combination of all

linearly independent functions that are generated by

repeated differentiations of g(x).

Case II: A function in the assumed particular solution is also a

solution of the associated homogeneous differential

equation.

Form Rule for Case II: If any yp contains terms that duplicate terms in

yc, then that yp must be multiplied by xn, where n is the

smallest positive integer that eliminates that duplication.
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Example 5: Forms of Particular Solutions – Case I

Determine the form of a particular solution of

(a) y′′ − 8y′ + 25y = 5x3e−x − 7e−x (b) y′′ + 4y = x cos x
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Example 6: Forming yp by Superposition – Case I

Determine the form of a particular solution of

y′′ − 9y′ + 14y = 3x2 − 5 sin 2x + 7xe6x
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Example 7: Particular Solution – Case II

Find a particular solution of

y′′ − 2y′ + y = ex
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Example 8: An Initial-Value Problem

Solve

y′′ + y = 4x + 10 sin x, y(π) = 0, y′(π) = 2
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Example 10: Third-Order DE – Case I

Solve

y′′′ + y′′ = ex
cos x
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Example 11: Fourth-Order DE – Case II

Determine the form of a particular solution of

y(4) + y′′′ = 1 − x2e−x
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Variation of Parameters (1/2)

How to Find a Particular Solution?

For the linear second-order differential equation

y′′ + P(x)y′ + Q(x)y = f (x) (11)

we seek a particular solution of the form

yp = u1(x)y1(x) + u2(x)y2(x)

where y1 and y2 form a fundamental set of solutions on I of the

associated homogeneous form of

a2(x)y
′′ + a1(x)y

′ + a0(x) = g(x)

The functions u1 and u2 are given by solving the system
{

y1u′
1
+ y2u′

2
= 0

y′
1
u′

1
+ y′

2
u′

2
= f (x)

(12)
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Variation of Parameters (2/2)

The solutions u′
1

and u′
2

can be expressed in terms of determinants:

u′1 =
W1

W
= −y2f (x)

W
and u′2 =

W2

W
=

y1f (x)

W
(13)

where

W =

∣

∣

∣

∣

y1 y2

y′
1

y′
2

∣

∣

∣

∣

, W1 =

∣

∣

∣

∣

0 y2

f (x) y′
2

∣

∣

∣

∣

, W2 =

∣

∣

∣

∣

y1 0

y′
1

f (x)

∣

∣

∣

∣

(14)

The linear system (12) with two unknowns u′
1

and u′
2

can be solved

by Cramer’s rule.

The function u1 and u2 are found by integrating the results in (13).

The determinant W is the Wronskian of y1 and y2.

By linear independence of y1 and y2 on I, we know that

W(y1(x), y2(x)) 6= 0 for every x in the interval.
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Derivation of Eq. (12)

Let y = u1y1 + u2y2, then

y′ = u1y′1 + u′1y1 + u′2y2 + u2y′2

and

y′′ = u1y′′1 + u′1y′1 + u′′1y1 + u′1y′1 + u′′2y2 + u′2y′2 + u′2y2 + u2y′′2

Thus, the left hand side of Eq. (11) becomes

y′′ + Py′ + Qy = u1[y
′′

1 + Py′1 + Qy1] + u2[y
′′

2 + Py′2 + Qy2]

+y1u′′1 + u′1y′1 + y2u′′2 + u′2y′2

+P[u′1y1 + u′2y2] + u′1y′1 + u′2y′2

=
d

dx
[u′1y1 + u′2y2] + P[u′1y1 + u′2y2] + u′1y′1 + u′2y′2

If we further let u′
1
y1 + u′

2
y2 = 0, then Eq. (11) becomes1

u′1y′1 + u′2y′2 = f (x)
1An additional constraint posed on u1 and u2.
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Summary of The Method (Variation of Parameters)

Procedure of solving the differential equation

a2y′′ + a1y′ + a0y = g(x)

using variation of parameters:

1 Find the complementary function yc = c1y1 + c2y2 .

2 Compute the Wronskian W(y1(x), y2(x)).

3 Put the equation into the standard form (dividing by a2)

y′′ + Py′ + Qy = f (x)

4 Find u1 and u2 by integrating u′
1
= W1/W and u′

2
= W2/W, where

W1 and W2 are defined as in Eq. (14). [Or, solve Eq. (12).]

5 A particular solution is yp = u1y1 + u2y2.

6 The general solution of the equation is then y = yc + yp.
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Example 1: General Solution Using VOP

Solve

y′′ − 4y′ + 4y = (x + 1)e2x
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Example 2: General Solution Using VOP

Solve

4y′′ + 36y = csc 3x
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Higher-Order Equations

Given a linear nth-order differential equation in the standard form

y(n) + Pn−1(x)y
(n−1) + · · ·+ P1(x)y

′ + P0(x)y = f (x)

If

yc = c1y1 + c2y2 + · · ·+ cnyn

is the complementary function, then a particular solution is

yp = u1(x)y1(x) + u2(x)y2(x) + · · ·+ un(x)yn(x)

where u′k, k = 1, 2, · · · , n are determined by

u′k =
Wk

W

where W is the Wronskian of y1, y2, · · · , yn and Wk is the determinant

obtained by replacing the kth column of the Wronskian by the column

consisting of the right-hand side of the equations.
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Remarks

Variation of parameters has a distinct advantage over the

method of undetermined coefficients in that it will always yield

a particular solution yp provided that the associated homogeneous

equation can be solved.

Variation of parameters, unlike undetermined coefficients, is

applicable to linear DE with variable coefficients.2

2Check Example 5 in Section 4.7.
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Cauchy-Euler Equation

A linear differential equation of the form

anxn dny

dxn
+ an−1xn−1

dn−1y

dxn−1
+ · · ·+ a1x

dy

dx
+ a0y = g(x)

where the coefficients an, an−1, · · · , a0 are constants, is known as a

Cauchy-Euler equation.
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2nd-Order Homogeneous Cauchy-Euler Equation (1)

For the second-order homogeneous Cauchy-Euler equation

ax2
d2y

dx2
+ bx

dy

dx
+ cy = 0 (15)

If we substitute y = xm, where m is to be determined, the 2nd-order

equation becomes3

(am(m − 1) + bm + c)xm = 0

Thus, y = xm is a solution of the DE whenever m is a solution of the

auxiliary equation

am(m − 1) + bm + c = 0

3Check!
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2nd-Order Homogeneous Cauchy-Euler Equation (2)

There are three different cases to be considered, depending on

whether the roots of this quadratic equation are real and distinct, real

and equal, or complex.

Case I: Distinct Real Roots. Let m1 and m2 denote the real roots of

am(m − 1) + bm + c = 0 such that m1 6= m2. Then the

general solution of Eq. (15) is

y = c1xm1 + c2xm2

Case II: Repeated Real Roots. Let m denotes the repeated real root of

the characteristic equation. Then the general solution of

Eq. (15) is

y = c1xm + c2xm
ln x
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2nd-Order Homogeneous Cauchy-Euler Equation (3)

Case III: Conjugate Complex Roots. If the roots of the characteristic

equation are the conjugate pair α± iβ, where α and β > 0

are real. Then the general solution of Eq. (15) is

y = xα[c1 cos(β ln x) + c2 sin(β ln x)]
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Case I: Distinct Real Roots

Since y = xm1 and y = xm2 are both solutions of Eq. (15) and m1 6= m2,

they form a fundamental set of solutions. Thus, the general solution is

y = c1xm1 + c2xm2
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Case II: Repeated Real Roots

The repeated real roots of the auxiliary equation is m =
a − b

2a
.

Since one solution is y1 = xm, the other solution can then be obtained

from reduction of order.
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Case III: Conjugate Complex Roots

If the conjugate complex roots of the auxiliary equation are α± βi, then

a solution of Eq. (15) is

y = c1xα+βi + c2xα−βi = xα(c1xβi + c2x−βi)

By Euler’s formula,

xiβ = (eln x)iβ = eiβ ln x = cos(β ln x) + i sin(β ln x) (16)

x−iβ = cos(β ln x)− i sin(β ln x) (17)

Let c1 = 1, c2 = 1 and c1 = −i, c2 = i, we have 2 cos(β ln x) and

2 sin(β ln x) in the complex number terms (16) and (17).4

That is, we can choose cos(β ln x) and sin(β ln x) as two independent

solutions (their Wronskian is not zero).5

Thus, the general solution is

y = xα[c1 cos(β ln x) + c2 sin(β ln x)]
4To get real solutions!
5This is something like change of basis in linear algebra.
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Example 1: Distinct Roots

Solve

x2
d2y

dx2
− 2x

dy

dx
− 4y = 0

Huei-Yung Lin (RVL, CCUEE) Differential Equations Section 4.7 71 / 89



Example 2: Repeated Roots

Solve

4x2
d2y

dx2
+ 8x

dy

dx
+ y = 0
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Example 3: An Initial-Value Problem

Solve

4x2y′′ + 17y = 0, y(1) = −1, y′(1) = −1

2
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Example 4: Third-Order Equation

Solve

x3
d3y

dx3
+ 5x2

d2y

dx2
+ 7x

dy

dx
+ 8y = 0
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Example 5: Variation of Parameters

Solve

x2y′′ − 3xy′ + 3y = 2x4ex
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Initial-Value Problem of Nonhomogeneous DE

The solution y(t) of the second order initial-value problem

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = y0, y′(x0) = y1 (18)

can be expressed as the superposition of two solutions:

y(x) = yh(x) + yp(x)

where yh(x) is the solution of the associated homogeneous DE with

nonhomogeneous initial conditions

y′′ + P(x)y′ + Q(x)y = 0, y(x0) = y0, y′(x0) = y1 (19)

and yp(x) is the solution of the nonhomogeneous DE with

homogeneous initial condisitions

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = 0, y′(x0) = 0. (20)
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Remarks

If the coefficients P(x) and Q(x) are constants, then the IVP (19),

i.e.,

y′′ + P(x)y′ + Q(x)y = 0, y(x0) = y0, y′(x0) = y1

can be solved by the method described in Section 4.3.

For the IVP (20), i.e.,

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = 0, y′(x0) = 0

the zero initial conditions are given. It can be thought as the

description of a physical system which is initially at rest. Thus, the

solution of the IVP (20) is sometimes called a rest solution.

That is, the solution of the IVP of nonhomogeneous DE (18) is

given by the solutions of “zero forcing term (19)” + “zero initial

condition (20)”.
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Green’s Function (1/2)

If y1(x) and y2(x) forms the fundamental set of solutions of the DE

y′′ + P(x)y′ + Q(x)y = 0 (21)

then a particular solution of the nonhomogeneous DE

y′′ + P(x)y′ + Q(x)y = f (x) (22)

can be found by variation of parameters (Section 4.6), i.e.,

yp(x) = u1(x)y1(x) + u2(x)y2(x) (23)

where

u′1(x) = −y2(x)f (x)

W(x)
, u′2(x) =

y1(x)f (x)

W(x)
, W(x) =

∣

∣

∣

∣

y1(x) y2(x)
y′

1
(x) y′

2
(x)

∣

∣

∣

∣

on an interval I where all functions make sense.
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Green’s Function (2/2)

If x and x0 are numbers in I, then (23) can be written as

yp(x) = y1(x)

∫ x

x0

−y2(t)f (t)

W(t)
dt + y2(x)

∫ x

x0

y1(t)f (t)

W(t)
dt

=

∫ x

x0

−y1(x)y2(t)

W(t)
f (t)dt +

∫ x

x0

y1(t)y2(x)

W(t)
f (t)dt

where W(t) = W(y1(t), y2(t)) is the Wronskian.

The above equation can be rewritten as

yp(x) =

∫ x

x0

G(x, t)f (t)dt (24)

where

G(x, t) =
y1(t)y2(x)− y1(x)y2(t)

W(t)
(25)

is called the Green’s function for the differential equation (18).
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Remarks

Observe that a Green’s function (25), i.e.,

G(x, t) =
y1(t)y2(x)− y1(x)y2(t)

W(t)

depends only on the fundamental solutions y1(x) and y2(x) of the

associated homogeneous DE for (22) and not on the forcing

function f (x).

Thus, all linear second-order differential equations (22) with the

same left-hand side but with different forcing functions have the

same Green’s function.

Eq. (25) can also be called as the Green’s function for the

second-order differential operator L = D2 + P(x)D + Q(x).
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Example 1: Particular Solution

Use the Green’s function to find a particular solution of

y′′ − y = f (x)
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Solution of the IVP (20)

Theorem (Theorem 4.8.1: Solution of the IVP (20))

The function

yp(x) =

∫ x

x0

G(x, t)f (t)dt (26)

is the solution of the initial-value problem

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = 0, y′(x0) = 0.

(Note the zero initial conditions!)

(Check the textbook for proof, page 172. It requires Leibniz formula.)
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Example 3

Solve the initial-value problem

y′′ − y = 1/x, y(1) = 0, y′(1) = 0.
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Example 4

Solve the initial-value problem

y′′ + 4y = x, y(0) = 0, y′(0) = 0.
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Solution of the IVP (18)

Theorem (Theorem 4.8.2: Solution of the IVP (18))

If yh(x) is the solution of the initial-value problem

y′′ + P(x)y′ + Q(x)y = 0, y(x0) = y0, y′(x0) = y1

and yp(x) is the solution (26) of the initial-value problem

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = 0, y′(x0) = 0

on the interval I, then

y(x) = yh(x) + yp(x)

is the solution of the initial-value problem

y′′ + P(x)y′ + Q(x)y = f (x), y(x0) = y0, y′(x0) = y1
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Proof of Theorem 4.8.2

Check the DE:

Since yh(x) is a linear combination of the fundamental solutions,

⇒ y = yh + yp is a solution of the nonhomogeneous DE.

Check the IC:

Since yh satisfies the initial conditions in (19) and yp satisfies the initial

condition in (20), we have

y(x0) = yh(x0) + yp(x0) = y0 + 0 = y0

y′(x0) = y′h(x0) + y′p(x0) = y1 + 0 = y1

Thus, both the differential equation and initial conditions are

satisfied.
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Remark

Eq. (19) has a forcing function, and Eq. (20) does not have any forcing

function.

According to Theorem 4.8.2, the response y(x) of a physical system

described by the IVP (18) can be separated into two different

responses, yh(x) and yp(x). That is,

y(x) = yh(x) + yp(x)

where

yh(x): response of system due to IC, y(x0) = y0, y′(x0) = y1.

yp(x): response of system due to the forcing function f (x).
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Example 5

Solve the initial-value problem

y′′ + 4y = sin 2x, y(0) = 1, y′(0) = −2. (27)
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Homework

Exercises 4.1: 4, 9, 26, 34.

Exercises 4.2: 3, 13, 20.

Exercises 4.3: 5, 22, 35, 41.

Exercises 4.4: 5, 13, 30, 38.

Exercises 4.6: 4, 14, 21, 26.

Exercises 4.7: 7, 22, 36, 38.

Exercises 4.8: 3, 13, 22.
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